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Introduction

This report will outline the theory behind the finite element method (FEM) and describe its implementation into a
MFC application using Visual C++. Finally, an analysis of various stress problems will validate the implementation
and identify future works.

Theory

The finite element method is a numerical method used to solve elasticity problems over complicated domains and
boundary conditions. The body is divided into sub-domains known as elements. The solution is quantified in
terms of nodal quantities which are solved as a linear system of equations.

Formulation of isotropic elasticity problem

An isotropic elasticity problem is formulated as a partial differential equation with the appropriate boundary
conditions.
div(o)+ fp =0

There exists two assumptions that simplify stress problems, plane strain assumption and plane stress assumption.
In this implementation, the problem is assumed to be under plane stress because the thickness of the geometry
is considered much smaller than the other two dimensions (width and length). Consequently, the problem is
two-dimensional. It is assumed the variation of stress and strain throughout the thickness is negligible.

Our reduced constitutive relations are,
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Consequently, stress can be solved for by inverting matrix B and obtaining matrix D.
1 v 0
E
D:C*lz1 slv 10 (2)
o0 1—w

where F is the Young’s modulus and v is poisson’s ratio.

Numerical Method

The T3 element was used in this implementation (Boeraeve,2010). The triangular element consists of 3 nodes
wher the ith node has 2 degrees of freedom, horizontal displacement u; and vertical displacment, v;. In total, T3
element is fully defined by 6 displacements.The displacements are approximated in terms of shape functions and
these nodal quantities as shown below. These elements have constant stress and strain on their domain.
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Formula for the shape functions are
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Figure 1: T3-Element (De,P)

Based on (De,P) and as shown in figure 1 variables, the relation between € and d can be expressed using matrix

B as shown below.
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Finally, stresses can be computed (De,P),
o =DBd

Numerical methods basics

The finite-element method is the solution of a system of linear equation of the form,

Kd=f

The global matrix K is not invertible and therefore the system of equations must be modified by eliminating
certain rows and columns corresponding to zero boundary conditions. The remaining displacements are called free

displacements. A solver is used to solve the following system of

equations.

Kmoddmod = fmod
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Software implementation

The stress analysis functionality is added to existing MFC application using Windows programming. To run
successfully, one must first have a mesh uploaded before going into "Mesh Opertion > FEA” from the main
menu. Upon clicking FEA, the following dialog box will appear. Upon appearing, class FEM is created in
memory, meaning its constructor is called as shown in listing below and all memory required is created using the
FEM::Create() function.

WARNING!!!; DO MOT USE IF MESH IS LARGE
Set Properties
Select Boundary Conditions
Analyze

Click only if myVec[nFaces][3] is set correctly nFaces set manually for now

Calor Elements

ok Cancel

Several things should be noted. First, the dialog box is not fully functional. Further work is required to allow
the user to click on ”Set Properties” to set values to E, v and thickness ¢. Similarly, the user will have the ability
to select boundary conditions using the ”Select Boundary Conditions” and clicking on the nodes of interest. These
button controls do nothing at the moment and all properties and boundary conditions are hard-coded. The only
functional button ” Analyze” invokes FEM::MainFunction() which runs the finite-element method. This function
will be described in great detail.

Activating a function using a button

Briefly, it can be seen that the dialog box creates an instance of the class FEM in dynamic memory which is used
to invoke functions. It should be noted that in order to unallocate memory for class FEM the dialog box must
be closed to invoke the class destructor. This is a short coming of the implementation. Future work is required
to ensure that if the user exits the application without closing the dialog box, the memory is still unallocated

properly.

Listing 1: CFEADIg’s constructor

CFEADIg:: CFEADIg() : CDialog(CFEADIg::1DD)

{
std :: cout << "CONSTRUCTOR: Dyn Alloc Space for class FEM’ << std::endl;
pFEM = new FEM();

Listing 2: CFEADIg’s functions

void CFEADIg:: OnBnClickedAnalyze ()
{

}

void CFEADIg:: OnBnClickedButton4 ()
{

}

pFEM—MainFunction ();

pFEM—colorFaces ();
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FEM Methodology

The finite-element method is described along with the supporting code starting with the MainFunction, which
is run when the user clicks ” Analyze” in the dialog box. Post-processing is omitted in listing 3.

Outline of MainFunction

1

2.

10.

11.

Set the values for £ and v using setProps

Extract node i’s x and y coordinates into columns of matNodes using setNodeMatrix

. Extract face j’s nodes into columns of matConn using setConnMatrix
. Set D matrix according to equation 2 using setDMatrix, used later in computing stresses from strains

. Function computeKMatrix computes the elemental stiffness matrix and ”scatters” each entry into the

global stiffness matrix K

. Function setBCs contains the data which modifies the global matrix such that is is invertible using matrix

Isol

Based on the information in Isol certain rows and columns are eliminated from the system of equations.
Functions scatterKmod and scatterfmod are used to populate a matrix with the appropriate modified
size.

. Finally, GaussSeidelSolver from class GLKMatrixLib is used to solve the system of equations

. Function scatterBackDisplacements rearranged the results into the original vector

Function computeStress uses displacement results to solve for stresses in each element

Post-processing using ColorFaces based on values in array vonMisVec

Listing 3: Main Function

void FEM:: MainFunction () {

setProps ();
setNodeMatrix ();
setConnMatrix ();
setDMatrix ();

computeKMatrix ();
setBCs ();

scatterKmod (K, Kmod);
scatterfmod (f, fmod);

GLKMatrixLib :: GaussSeidelSolver (Kmod, fmod, vars, dmod,le—6);
scatterBackDisplacements (dmod, d);

computeStress ();

std:: cout << "END OF FEM” << std ::endl;
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Functions

Setting properties

Based on the values set in setProps(), equation 2 shows how matrix D values are computed. Special attention
must be paid to units.

Listing 4: setProps()

void FEM:: setProps () {

t = 0.5;
E = 30e6;
v = 0.25;

Listing 5: setDMatrix()

void FEM::setDMatrix () {

D[0][0] = 1; D[0][1] = v; D[0][2] = 0;
D[1][0] = v; D[1][1] = 1; D[1][2] = O;
D[2][0] = 0; D[2][1] = 0; D[2][2] = (1-v)/2;
for (int 1 = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
D[i][j]l =E / (1 — vxv)«D[i][]j];

Setting matNodes and connMatrix

This section was based on (Chessa, 2002). Figure 2 illustrated the matrices containing information on the mesh
geometry used for the computation of matrix B of equation 7. Note, in the implementation, matrix nodes is called
matNodes and matrix elements is called connNodes.

EXAMPLE

5 6 (2,6)

0.0 00
20 0.0
0.0 3.0
nodes =1 5,0 30
0.0 6.0
20 6.0

2
elements = [ Hl

6 :

,_
L IR RS )
b o W
S—

0,0) ! 2

Figure 1: A simple finite element mesh of triangular elements

Figure 2: Setting matrices describing mesh geometry (Chessa,2002)
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Listing 6: setNodeMatrix()

void FEM::setNodeMatrix () {

CMainFrame #pWnd = (CMainFrame x)(AfxGetMainWnd ());
CMeshWorksDoc *pDoc = (CMeshWorksDoc # ) (pWnd—>GetActiveDocument () );
CGLKernelView *cView = pWnd—>GetMainView()—>GetGLKernelView () ;

QBody * body = (QBodyx*)(pDoc—>m_meshList ).GetHead ();
QMeshNodex pNode = (QMeshNodex*)body—>GetTrglNodeList (). GetHead ();

int ¢ = 0;

for (GLKPOSITION Pos = body—>GetTrglNodeList (). GetHeadPosition (); Pos != NULL;
pNode = (QMeshNodex)body—>GetTrglNodeList (). GetNext (Pos);
double xx, yy, zz;
pNode—>GetCoord3D (xx, yy, zz);

matNodes [c][0] = xx;
matNodes [c|[1] = yy;
c=c¢+ 1;

Listing 7: setConnMatrix()

void FEM::setConnMatrix () {

CMainFrame *pWnd = (CMainFrame x)(AfxGetMainWnd ());
CMeshWorksDoc *pDoc = (CMeshWorksDoc * ) (pWnd—>GetActiveDocument () );
CGLKernelView *cView = pWnd—>GetMainView()—>GetGLKernelView () ;

QBody * body = (QBodyx*)(pDoc—>m_meshList ).GetHead ();
QMeshFacex pFace = (QMeshFacex)body—>GetTrglFaceList (). GetHead ();

int ¢ = 0;
for (GLKPOSITION Pos = body—>GetTrglFaceList (). GetHeadPosition (); Pos != NULL;

pFace = (QMeshFacex)body—>GetTrglFaceList (). GetNext (Pos);

matConn[c|[0] = (pFace—>GetNodeRecordPtr(1))—>GetIndexNo ();
matConn[c][1] = (pFace—>GetNodeRecordPtr(2))—>GetIndexNo ();
matConn[c|[2] = (pFace—>GetNodeRecordPtr(3))—>GetIndexNo ();

c=c¢+ 1;
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Computing and assembling global stiffness matrix

The advantages of storing the geometry information in matNodes and matConn will be apparent in the construction
of the global stiffness matrix.

As shown in equation 7, the matrix B must be computed individually for each element. Listing 8 lines 9 to
26 show geometrical data extracted and used to create B. This matrix in turn is used to compute the elemental
stiffness matrix using equation 9. This computation is done in lines 28 to 35.

K. = AtBTDB (9)

Finally, once K. is computed for each element the values are scattered into the much larger global stiffness matrix
as shown in line 37.

Listing 8: computeKMatrix()

void FEM:: computeKMatrix () {

int nl, n2, n3;

double x1, yl1, zl1, x2, y2, z2, x3, y3, z3;

double bl, b2, b3, cl, c2, c3, A;

for (int element = 0; element < nFaces; element++) {
nl = matConn[element][0];
n2 = matConn|element|[1];
n3 = matConn[element|[2];
x1 = matNodes[nl — 1][0]; yl = matNodes[nl — 1][1];
x2 = matNodes[n2 — 1][0]; y2 = matNodes[n2 — 1][1];
x3 = matNodes[n3 — 1][0]; y3 = matNodes[n3 — 1][1];

A= 0.5x((x2xy3 — x3*xy2) + (x3xyl — x1xy3) +

bl = y2 — y3; b2 = y3 — yl; b3 =yl — y2;
cl = x3 — x2; ¢c2 =x1 — x3; ¢33 = x2 — x1;
B[0][0] = bl / (2 = A); B[O][2] =D2 / (2 x A); B[O][4] =D3 / (2 = A);
B[1][1] = ¢l / (2 %= A); B[1][3] =¢2 / (2 «= A); B[1][5] =3 / (2 % A);
B[2][1] = Dbl / (2 %= A); B[2][3] =Db2 / (2 x A); B[2][5] = b3 / (2 x A);
B[2]][0] = ¢l / (2 %= A); B[2][2] =¢c2 / (2 x A); B[2][4] =3 / (2 x A);
GLKMatrixLib :: Transpose (B, Brow, Bcol, BT);
GLKMatrixLib :: Mul(BT, D, 6, 3, 3, temp);
GLKMatrixLib : : Mul (temp, B, 6, 3, 6, Ke);
for (int 1 = 0; i < Kerow; i++) {
for (int j = 0; j < Kecol; j++) {
Ke[i]]7] = txAnke[i][j];

}
}

scatter (Ke, K, nl, n2, n3);
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By storing the index of each node in matConn. The node index for each vertex of each element can be scattered
into the appropriate row and column of the global stiffness matrix as shown in listing 9.

Listing 9: scatter()

void FEM:: scatter (doublexx &Ke, doublexx &K, int nl, int n2, int n3) {

int row = 0, col =0;

for (int 1 = 0; i < Kerow; i++) {
switch (i) {
case 0: row = 2 x nl — 2; break;
case 1: row = 2 *x nl — 1; break;
case 2: row = 2 *x n2 — 2; break;
case 3: row = 2 *x n2 — 1; break;
case 4: row = 2 *x n3 — 2; break;
case 5: row = 2 *x n3 — 1; break;
¥
for (int j 0; j < Kecol; j++) {

switch z‘]) {

case 0: col = 2 x nl — 2; break;

case 1: col = 2 % nl — 1; break;

case 2: col = 2 x n2 — 2; break;

case 3: col = 2 x n2 — 1; break;

case 4: col = 2 x n3 — 2; break;

case 5: col = 2 x n3 — 1; break;

¥

Klrow|[col] = K[row]|[col] + Ke[i][]];

Setting Boundary Conditions

Boundary conditions could be written and commented out in order to use the appropriate node index for the
corresponding mesh. As shown in listing 10, four cases can be used. However, only cases 1-3 will be presented
in this report. The objective of setBCs() is to populate matrix Isol which contains the indices corresponding to
the degree of freedom (u,v) to be excluded from the system of equations. This function also sets the values of the
force in the appropriate index of array f. The number of degrees of freedom that are fixed will have an
effect on the size of the Isol and Kmod, matrices among others. This size called vars in FEM.h is
declared in the constructor, it must be modified properly BEFORE running the program.

Listing 10: setBCs()

void FEM::setBCs () {

In the simplest case, the boundary conditions can be set as shown in listing 11. This boundary condition will
consistently set the same corners to zero displacement, taking advantage of the ordering of the nodes generated
using MeshLab. Figure 3 shows the boundary conditions corresponding to listing 11.
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Figure 3: Case 1 Square Mesh Boundary Conditions

Listing 11: Case 1 Boundary Conditions

int DOF1 = sqrt(nNodes) * 2;

int DOF3 = (nNodes — sqrt(nNodes) + 1) =
int DOF4 = (nNodes — sqrt(nNodes) + 1) x
int DOF5 = 1;

int DOF6 = 2;

int FORCEDOF = nNodes * 2;

2;
2 — 1;

int ¢ = 0;
for (int i = 1; i <= nDOF; i++) {
if (i != DOF1 && i != DOF3 && i != DOF4 && i != DOF5 && i != DOF6) {
Isol[c] = 1i;
c=c¢+ 1;

¥
}

f [FORCEDOF—1] = 1225;

A more complicated geometry requires more manual setting of boundary conditions. To compensate for this
tedious task, a vector of integers called list NodesExclude is adjusted such that all zero displacement nodes are
set here. To establish which nodes are to be inserted in this vector and which nodes correspond to the horizontal
force, boundary nodes of interest were clicked using MeshWorks’ "Mesh Operations > Select Node”, which was
modified to output node index in addition to its default x,y,z coordinates by MessageBox.

Listing 12: Case 2 Boundary Conditions

std :: vector<int> listNodesExclude = { 2, 5, 7, 3, 6, 4, 8, 1 };
std :: vector<int> listDOFInclude;

for (int i = 0; i < nDOF; i++) {
listDOFInclude.push_back (i + 1);
}

int my_int;
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for (int i = 0; i < listNodesExclude.size (); i++) {
for (int j = 0; j < 2; j++) {
i (j — 0)
my_int = listNodesExclude[i] * 2;
else
my_int = listNodesExclude[i] % 2 — 1;

auto it = std::find (listDOFInclude.begin(), listDOFInclude.end (), my_in

if (it != listDOFInclude.end()) {
list DOFInclude . erase (it );

}

for (int 1 = 0; i < listDOFInclude.size (); i++) {
Isol[i] = listDOFInclude|i];

}

f[2 « 251 — 2] = 1500;
f[2 % 243 — 2] = 1500;
f£[2 % 245 — 2] = 1500;
f{2 % 246 — 2] = 1500;
f£[2 % 248 — 2] = 1500;
f[2 = 249 — 2] = 1500;
f[2 % 247 — 2] = 1500;
f£[2 % 244 — 2] = 1500;
f[2 % 242 — 2] = 1500;
f[2 % 250 — 2] = 1500;

Scattering global matrix values into modified matrix

The finite-element method is the solution of a system of linear equation which must be modified by applying
boundary conditions.

—

KCT: f Kmoddr;od = f'n:Od

Listing 13: scatterKmod|()

void FEM:: scatterKmod (doublesx &K, doublexx &Kmod) {

int n = vars;
int row, col;

for (int 1 = 0; i < n; i++) {
row = Isol[i] — 1;
for (int j = 0; j < n; j++) {
col = Isol[j] — 1;
Kmod[i][j] = K[row][col];
}

Listing 14: scatterfmod()

10
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void FEM:: scatterfmod (doublex &f, doublex &fmod) {
int n = vars;
int row;

for (int 1 = 0; i < n; i++) {
row = Isol[i] — 1;
fmod[i] = f[row];

Solving system of equations

Listing 15: In MainFunction...

bool doesSystemSolve = GLKMatrixLib:: GaussJordanElimination (Kmod, vars, fmod);
scatterBackDisplacements (fmod, d);

The reverse scattering must be done. When computing stress of elements, even zero displacement nodes must
be included.

Listing 16: scatterBackDiplacements|()

void FEM:: scatterBackDisplacements (doublex &dmod, doublex &d) {

int n = vars;

int row;

for (int 1 = 0; i < n; i++) {
row = Isol[i] — 1;
d[row] = dmod|[i];

Solving for stresses

With the displacements solved, the stresses can be computed as shown in equation 8. For each element, matrix
B must be recomputed and matConn and matNodes are conveniently used again. Additionally, listing 17 shows
how the values are outputted to a text file (for later visualizing in MATLAB). Also, one can see an array called
vonMisVec, storing the Von Mises stress for each element. This is used for post-processing and visualization in
MeshWorks. Although, colors can be displayed in MeshWorks ,further work is needed and MATLAB was preferred
for visualizing results due to built in functions.

Listing 17: computeStress()

void FEM:: computeStress ()

{

int nl, n2, n3;
double bl, b2, b3, cl, c2, 3, x1, x2, x3, yl, y2, y3, A;

std :: ofstream myfile;
myfile.open(” stresses.txt”);

11
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for (int element = 0; element < nFaces; element++) {
// Extract node index
nl = matConn|element |[0];
n2 = matConn[element|[1];
n3 = matConn|[element |[2];

// Extract elemental displacement values
de[0] = d[2 * nl — 2];
de[1l] = d[2 % nl — 1];
de[2] = d[2 % n2 — 2];
de[3] = d[2 % n2 — 1];
de[4] = d[2 % n3 — 2];
de[5] = d[2 * n3 — 1];

// RECOMPUTE B MATRIX
// Using node number from above to access x,y coordinates

// (Note: index starts is 1 less for matrices, hence the

x1 = matNodes[nl — 1][0]; yl = matNodes[nl — 1][1];
x2 = matNodes[n2 — 1][0]; y2 = matNodes[n2 — 1][1];
x3 = matNodes[n3 — 1][0]; y3 = matNodes[n3 — 1][1];

// Computing area of element
7 <

A = abs(0.5%((x2%y3 — x3%xy2) + (x3*xyl — xlxy3) + (xl*xy2 —

// Computing elements of matrix B
cl = x3 — x2; ¢c2 =x1 — x3; ¢3 = x2 — x1;
// Setting matrix B

BIO][0] = Dbl / (2 = A); B[0][2] = b2 / (2 « A); B[0][4] =
B[1][1] = ¢l / (2 = A); B[1][3] = ¢2 / (2 « A); B[1][5] =
B2][1] = Dbl / (2 = A); B[2][3] = b2 / (2 « A); B[2][5] =
B[2][0] = ¢l / (2 x A); B[2][2] = ¢c2 / (2 « A); B[2][4] =

// Computing Stress

GLKMatrixLib:: Mul(D, B, 3, 3, 6, temp2);
GLKMatrixLib : : Mul (temp2, de, 3, 6, sige);
// Store vonMises for drawShade function
double vonMises = computeVonMises ();
vonMisVec [element| = vonMises;

// Element center (where values are assumed)
double xavg = (x1 + x2 + x3) / 3;

double yavg = (yl1 + y2 4+ y3) / 3;

// Function toFile writes values to text file

—-1)

x2xy1)));

o o o o
W w W w
S~ T T T
A~ A~~~
NN NN
* K X X

-

toFile (element , xavg,yavg,sige[0], sige[l], sige[2], vonMises,myfile);

12




© 00 J O U = W N~

I Y T
= w N = O

W N

© 00 J O U i W N~

—_ =
)

© 00 N O U= W N~

Post-processing

Array vonMisVec contains the von Mises stress for each element as computed in computeStress.

Listing 18: In MainFunction...

double maxVM = 0.0;
int maxVMindex = 0;
for (int i = 0; i < nFaces; i++) {
if (vonMisVec[i] > maxVM) {
maxVM = vonMisVec i ];
maxVMindex = 1i;

}

for (int 1 = 0; i < nFaces; i++) {
vonMisVec[i] = 1.0 — (vonMisVec[i]/ maxVM);
}

Listing 19: In MainFunction...

void CFEADIg:: OnBnClickedButton4 ()
{

}

pFEM—colorFaces ();

Listing 20: In FEM...

void FEM:: colorFaces () {
std :: cout << "colorFaces” << std::endl;

AfxGetApp()—>BeginWaitCursor () ;
CMainFrame *pWnd = (CMainFrame x)(AfxGetMainWnd ());

pWnd—>ChangeColor (vonMisVec ,vonMisVecrow ) ;

AfxGetApp()—>EndWaitCursor ();

I added an array called myVec in class QBody and m FEAON in GLKernelView. The array contains
the information about the magnitude of the colors required for each element. It gets populated in listing 21. Also,
the boolean gets turned to true.

Listing 21: In CMainFrame...

void CMainFrame:: ChangeColor (doublex &vec, int vecRow)

{
CMeshWorksDoc *pDoc = (CMeshWorksDoc ) GetActiveDocument ();
GetMainView()—>GetGLKernelView()—>m FEAON = true;

)

double vecMax=0.0, vecMin = vec [0]
for (int 1 = 0; i < vecRow; i++) {

13
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if (vec[i] > vecMax) { vecMax = vec[i]; }
if (vec[i] < vecMin) { vecMin = vec[i]; }

float red, green, blue;
for (POSITION Pos = (pDoc—>m_meshList ). GetHeadPosition (); Pos != NULL;) {
QBody xpatch = (QBody x*)((pDoc—>m_meshList).GetNext(Pos));

for (int i = 0; i < vecRow; i++) {
ChangeValueToColor2 (vecMax, vecMin, vec[i],red, green, blue);
patch—>myVec[i][0] = red;
patch—>myVec[i][1] = green;
}
¥

GetMainView()—>GetGLKernelView()—>refresh ();

The solution was implemented where two draw functions exist. The original draw function is called draw-
Shade(). When the switch gets activated drawShade2 is used as shown in one instance in listing 22. Having
access to QBody’s member variables, it can draw itself based on the values stored in myVec. A more elegant
solution should exist. Also, after clicking ”Color Element” the body does not change colors immediately. One
must go into ”Mesh Operations > Select Node” to make the colors change.

Listing 22: Effects...

if (mFEAON) {

entity —>drawShade2 ();
}
else {

entity —>drawShade ();
}
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Results and Discussion

Case 1: Square Mesh

Example 1000 1b
'y 300 psi

P

. Thickness (t) = 0.5 in
210 E=30x]06 psi

Ell v=0.25

3in 7

Figure 4: Total displacement for 10 by 10 mesh

Figure 3 showed the boundary conditions and force applied. The full problem is shown in figure 4 and solved in
(De,P). The only modification to the problem was a simplification which saw the 300 psi surface force be replaced
by the equivalent 225 Ib force in the corner such that a traction force of 1225 1b was applied. This is shown in
(De,P). This case was convenient as a starting point because of the results could be compared. The values were
successful obtained for the 2 by 2 mesh.

Total Displacement
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(a) Total displacements (b) Stresses

Figure 5: Results for 10 by 10 mesh

As expected the largest total displacement was at the corner where the force was applied. Next, convergence
was studied by increasing the number of elements. The results are shown in table 1 and figure 6.
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Total Nodes Total Faces MAXoy ..at index MAX d ..at index mnode #
1 4 2 1344.2 0 - - -
2 25 32 5770.8 6 | 3.3509E-04 49 25
3 36 50 7241.6 8 | 3.9625E-04 71 36
4 100 162 12995 16 | 5.7155E-04 199 100
5 144 242 15820 20 | 6.3301E-04 287 144
6 196 338 18626 24 | 6.8426E-04 391 196
7 256 450 - - | 7.2820E-04 511 256
8 400 722 - - | 8.0090E-04 799 400
9 484 795 - - | 8.3166E-04 967 484

Table 1: Case 1 maximum values for refined mesh
Total Faces vs. Maximum displacement (dmax)
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Figure 6: Convergence graph

Case 2: Plate with Hole

A mesh was generated using DistMesh - a simple mesh generator in MATLAB (Burkardt, 2011). A problem
described in figure 8 was studied with results displayed in figure 9 which were not validated. The objective was to
implement the program on a geometry with higher complexity. Further work will mimic the problem defined in
Cornell University’s ANSYS module (confluence.cornell.edu) where stresses and displacements can be compared.
The appropriate meshes will have to be selected as shown in 7.
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Figure 7: Meshes for plate with hole problem: MATLAB generated (left) and ANSYS Cornell (right)
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Figure 9: Meshes for plate with hole problem: MATLAB generated (left) and ANSYS Cornell (right)

Case 3: Beam under tensile stress

Case 3 seeks to validate the finite element functionality. The beam under uni-axial loading problem could be
readily compared with the results from Cornell University’s ANSYS Module (confluence.cornell.edu). The same
material properties and loading forces were considered. The results displayed in figure 10a validate the computation
of displacements. However, the stresses can be seen to be exaggerated at the point where the force is applied.
Figure 11 confirms that o, is approximated 200 MPa along most of the beam’s cross section as was shown in
(confluence.cornell.edu). Figure 11 is three plots of o, at the lower edge, middle and upper edge of the beam.
There is a curious fluctuation at the lower boundary which is not present at the upper boundary, requiring further
investigation. Aside from that, large fluctuations at the point at which the force is applied in the middle which is
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expected.
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Figure 10: Meshes for plate with hole problem: MATLAB generated (left) and ANSYS Cornell (right)
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Figure 11: o, along beam at three heights
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Appendix

Listing 23: class FEM

#pragma once
#include <iostream>

class FEM {
public:

float t, E, v;

FEM() { ... };

FEM() { ... };

void printNodeCoord ();
void PrintMatrix (doublexx &a, int row, int col);
void PrintVector(doublex &a, int row);

void setProps();

void setNodeMatrix ();
void setConnMatrix ();
void setDMatrix ();
void setBCs();

void computeKMatrix ();

void scatter (doublexx &Ke, doublexx &K, int nl, int n2, int n3);
void scatterKmod (doublexx &K, doublexx &Kmod);

void scatterfmod (doublex &f, doublex &fmod);

void scatterBackDisplacements (doublex &dmod, doublex &d);

void computeStress ();

double computeVonMises ();

int getNumberOfNodes ();
int getNumberOfFaces ();

void Create ();

void Destroy ();

void CreateVector (doublex &ptr, int ptrsize);
void DeleteVector (doublex &ptr);

void CreateVectorIsol(intx &ptr, int ptrsize);
void DeleteVectorIsol (intx &ptr);

void colorFaces ();
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void openFile ();

void toFile(int node, double xavg, double yavg,
double sigx, double sigy, double tauxy,
double vonMis, std::ofstream& myfile);

void MainFunction ();
public:

int nNodes;
int nFaces;
int nDOF;

doublex*x matNodes; int matNodesRow,matNodesCol;
doublex* matConn; int matConnRow, matConnCol;
doublex*x D; int Drow, Dcol;

doublexx B; int Brow, Bcol;

doublex f; int frow;

doublex d; int drow;

doublexx K; int Krow, Kcol;

doublexx Ke; int Kerow, Kecol;

int vars;

intx Isol; int Isolrow;

doublex*x Kmod; int Kmodrow, Kmodcol;
doublex fmod; int fmodrow;

doublex dmod; int dmodrow;

doublex sige; int sigerow;
doublex de; int derow;

doublex*x BT; int BTrow,BTcol;
double **xtemp ; int trow,tcol;
doublex*xtemp?2; int t2row, t2col;
doublex vonMisVec; int vonMisVecrow;

Listing 24: FEM Constructor

FEM() { std::cout << "FEM constructor called” << std::endl;

nNodes = getNumberOfNodes () ;
nFaces = getNumberOfFaces ();
nDOF = nNodes *x 2;

matNodesRow = nNodes; matNodesCol

matConnRow = nFaces; matConnCol = 3;
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29
30
31

Drow = 3; Dcol = 3;

Brow = 3; Bcol = 6;

frow = nDOF;

drow = nDOF;

Krow = nDOF; Kcol = nDOF;
Kerow = 6; Kecol = 6;

vars = nDOF — 5;

Isolrow = vars;

Kmodrow = vars; Kmodcol = vars;
fmodrow = vars;

dmodrow = vars;

sigerow = 3;

derow = 6;

BTrow = Bcol; BTcol = Brow;
trow = 6; tcol = 3;

t2row = 3; t2col = 6;
vonMisVecrow = nFaces;

Create ();
¥
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